Assessment of atmospheric conditions over the Hong Thai Binh river watershed by means of dynamically downscaled ERA-20C reanalysis data
16/08/2021Long-term, high spatial and temporal resolution of atmospheric data is crucial for with the purpose of reducing the effects of hydro-meteorological risks on human society in an economically and environmentally sustainable manner. However, such information usually is limited in transboundary regions due to different governmental policies, and to conflicts in the sharing of data. In this study, high spatial and temporal resolution atmospheric data were reconstructed by means of the Weather Research and Forecasting Model-WRF with input provided from the global atmospheric reanalysis of the 20th century (ERA-20C) over the Hong-Thai Binh River watershed (H-TBRW). The WRF model was implemented over the physical boundaries of the study region based on ERA-20C reanalysis data and was configured based on existing ground observation data in Vietnam’s territories, and the global Aphrodite precipitation data. With the validated WRF model for H-TBRW, the reconstructed atmospheric data were first reconstructed for 1950–2010, and then were evaluated by time series and spatial analysis methods. The results of this study suggest no significant trend in the annual accumulated precipitation depth, while there were upward trends in annual temperature at both the point and watershed scale. Furthermore, the results confirm that topographic conditions have significant effects on the climatic system such as on precipitation and temperature.
INTRODUCTION
STUDY REGION
DATA AND MODEL IMPLEMENTATION
ASSESSMENT OF ATMOSPHERIC CONDITIONS OVER THE TRANSBOUNDARY REGION–HONG THAI BINH RIVER WATERSHED
SUMMARY AND CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES
Anderson, M. L., Chen, Z. Q., Kavvas, M. L. & Yoon, J. Y.2007 Reconstructed historical atmospheric data by dynamical downscaling. J. Hydrol. Eng. 12 (2), 156–162.
Benjamin, S. G., Dévényi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L. & Manikin, G. S. 2004. An hourly assimilation–forecast cycle: the RUC. Mon. Weather Rev. 132 (2), 495–518.
Bougeault, P. & Lacarrere, P. 1989 Parameterization of orographyinduced turbulence in a Mesobeta–Scale model. Mon. Weather Rev. 117 (8), 1872–1890.
Brower, M. C., Barton, M. S., Lledó, L. & Dubois, J. 2013 A Study of Wind Speed Variability Using Global Reanalysis Data. AWS Truepower, Karnataka, India.
Chou, M. D. & Suarez, M. J. 1999 A Solar Radiation Parameterization for Atmospheric Studies, Vol. 15, NASA Tech. Memo. Goddard Space Flight Center, NASA, Greenbelt, MD, p. 104606.
Compo, G. P., Whitaker, J. S. & Sardeshmukh, P. D. 2006 Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Am. Meteorol. Soc. 87 (2), 175–190.
Daley, R. 1993 Atmospheric Data Analysis, No. 2. Cambridge University Press, Cambridge, UK.
Fuka, D. R., Walter, M. T., MacAlister, C., Degaetano, A. T., Steenhuis, T. S. & Easton, Z. M. 2014 Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol. Process. 28 (22), 5613–5623.
Gates, W. L. 1992 AMIP: The atmospheric model intercomparison project. Bull. Am. Meteorol. Soc. 73 (12), 1962–1970.
Giorgi, F., Jones, C. & Asrar, G. R. 2009 Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol. Org. (WMO) Bull. 58 (3), 175–183.
Han, J. & Pan, H. L. 2011 Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast. 26 (4), 520–533.
He, M. & Gautam, M. 2016 Variability and trends in precipitation, temperature and drought indices in the state of California. Hydrology 3 (2), 14.
Hersbach, H., Peubey, C., Simmons, A., Poli, P., Dee, D. & Berrisford, P. 2013 ERA-20CM: a twentieth century atmospheric model ensemble. Q. J. Roy. Meteor. Soc. 141, 2350–2375.
Hersbach, H., Peubey, C., Simmons, A., Berrisford, P., Poli, P. & Dee, D.2015 ERA-20CM: a twentieth-century atmospheric model ensemble. Q. J. R. Meteorol. Soc. 141 (691), 2350–2375.
Ho, C. 2018 Trend Analysis of Changes, Impacts of Droughts, Salinity Intrusion on Socio-Economic Development in the Red River Delta and Proposing Solutions. The Key Laboratory of River and Coastal Engineering (KOLRCEVietnam), Vietnam.
Ishida, K., Gorguner, M., Ercan, A., Trinh, T. & Kavvas, M. L. 2017 Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections. Sci. Total Environ. 592, 12–24.
Jang, S. & Kavvas, M. L. 2013 Downscaling global climate simulations to regional scales: statistical downscaling versus dynamical downscaling. J. Hydrol. Eng. 20 (1), A4014006.
Jang, S., Kavvas, M. L., Ishida, K., Trinh, T., Ohara, N., Kure, S., Chen, Z. Q., Anderson, M. L., Matanga, G. & Carr, K. J.2017a A performance evaluation of dynamical downscaling of precipitation over northern California. Sustainability 9 (8), 1457.
Jang, S., Kure, S., Ohara, N., Kavvas, M. L., Chen, Z. Q., Carr, K. J. & Anderson, M. L. 2017b Application of WEHY-HCM for modeling interactive atmospheric-hydrologic processes at watershed scale to a sparsely gauged watershed. Sustainability 9 (9), 1554.
Kavvas, M. L., Kure, S., Chen, Z. Q., Ohara, N. & Jang, S. 2013 WEHY-HCM for modeling interactive atmospherichydrologic processes at watershed scale. I: model description. J. Hydrol. Eng. 18 (10), 1262–1271.
Krishnamurti, T. N., Jha, B., Rasch, P. J. & Ramanathan, V. 1997 A high resolution global reanalysis highlighting the winter monsoon. Part I, reanalysis fields. Meteorol. Atmos. Phys.64 (3–4), 123–150.
Kure, S., Jang, S., Ohara, N., Kavvas, M. L. & Chen, Z. Q. 2013 WEHY-HCM for modeling interactive atmospherichydrologic processes at watershed scale. II: Model application to ungauged and sparsely gauged watersheds. J. Hydrol. Eng. 18 (10), 1272–1281.
Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P. & Stouffer, R. J. 2008 Stationarity is dead: whither water management? Science 319 (5863), 573–574.
Ohara, N., Chen, Z. Q., Kavvas, M. L., Fukami, K. & Inomata, H.2010 Reconstruction of historical atmospheric data by a hydroclimate model for the Mekong River basin. J. Hydrol. Eng. 16 (12), 1030–1039.
Poli, P., Hersbach, H., Tan, D., Dee, D., Thepaut, J. N., Simmons, A., Peubey, C., Laloyaux, P., Komori, T., Berrisford, P. & Dragani, R. 2013 The Data Assimilation System and Initial Performance Evaluation of the ECMWF Pilot Reanalysis of the 20th-Century Assimilating Surface Observations Only (ERA-20C). ERA Report Series, 14, pp. 59. Available from: http://old.ecmwf.int/publications/library/ecpublications/_pdf/era/era_report_series/RS_14.pdf.
Poli, P., Hersbach, H., Dee, D., Berrisford, P., Simmons, A. & Laloyaux, P. 2015 ERA-20C Deterministic. ECMWF ERA Rep. 20, pp. 48. Available from: www.ecmwf.int/en/elibrary/11700-era-20c-deterministic.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G., Peubey, C., Thépaut, J. N. & Trémolet, Y. 2016 ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29 (11), 4083–4097.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. & Powers, J. G. 2005 A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475þ STR, pp. 113. Available from: www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.
Sneddon, C. & Fox, C. 2006 Rethinking transboundary waters: a critical hydropolitics of the Mekong basin. Polit. Geogr. 25 (2), 181–202.
Tao, W. K., Simpson, J. & McCumber, M. 1989 An ice-water saturation adjustment. Mon. Weather Rev. 117 (1), 231–235.
Trinh, T., Jang, S., Ishida, K., Ohara, N., Chen, Z. Q., Anderson, M. L., Darama, Y., Chen, J. & Kavvas, M. L. 2016a Reconstruction of historical inflows into and water supply from Shasta Dam by coupling physically based hydroclimate model with reservoir operation model. J. Hydrol. Eng. 21 (9), 04016029.
Trinh, T., Ishida, K., Fischer, I., Jang, S., Darama, Y., Nosacka, J., Brown, K. & Kavvas, M. L. 2016b New methodology to develop future flood frequency under changing climate by means of physically based numerical atmospheric-hydrologic modeling. J. Hydrol. Eng. 21 (4), 04016001.
Voss, K. A., Famiglietti, J. S., Lo, M., Linage, C., Rodell, M. & Swenson, S. C. 2013 Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 49 (2), 904–914.
Wilk, J., Kniveton, D., Andersson, L., Layberry, R., Todd, M. C., Hughes, D., Ringrose, S. & Vanderpost, C. 2006 Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. J. Hydrol. 331 (1), 18–29.
Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M. I. & Hamada, A. 2009 A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sola 5, 137–140.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N. & Kitoh, A. 2012 APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 93 (9), 1401–1415.
C. Ho
The Key Laboratory of River and Coastal
Engineering,
Hanoi, Vietnam
A. Nguyen (corresponding author)
Hydrologic Research Laboratory, Department of
Civil and Environmental Engineering,
University of California,
Davis, CA, USA
E-mail: aznguyen@ucdavis.edu
A. Ercan
J. Amorocho Hydraulics Laboratory, Department of
Civil and Environmental Engineering,
University of California,
Davis, CA, USA
M. L. Kavvas
Hydrologic Research Laboratory, Department of
Civil and Environmental Engineering,
University of California,
Davis, CA, USA
V. Nguyen
Vietnam Academy for Water Resources,
Hanoi, Vietnam
T. Nguyen
Faculty of Civil Engineering,
Thuy Loi University,
Hanoi, Vietnam
IWA Publishing 2018 - Journal of Water and Climate Change 2018
Ý kiến góp ý: