Development of high-resolution 72 h precipitation and hillslope flood maps over a tropical transboundary region by physically based numerical atmospheric–hydrologic modeling
20/08/2021T. Trinh, C. Ho, N. Do, A. Ercan and M. L. Kavvas
Long-term, high spatial and temporal resolution atmospheric and hydrologic data are crucial for water resource management. However, reliable high-quality precipitation and hydrologic data are not available in various regions around the world. This is, in particular, the case in transboundary regions, which have no formal data sharing agreement among countries. This study introduces an approach to construct long-term high-resolution extreme 72 h precipitation and hillslope flood maps over a tropical transboundary region by the coupled physical hydroclimate WEHY-WRF model. For the case study, Da and Thao River watersheds (D-TRW), within Vietnam and China, were selected. The WEHYWRF model was set up over the target region based on ERA-20C reanalysis data and was calibrated based on existing ground observation data. After successfully configuring, WEHY-WRF is able to produce hourly atmospheric and hydrologic conditions at fine resolution over the target watersheds during 1900–2010. From the modeled 72 h precipitation and flood events, it can be seen that the main precipitation mechanism of DRW and TRW are both the summer monsoon and tropical cyclone. In addition, it can be concluded that heavy precipitation may not be the only reason to create an extreme flood event. The effects of topography, soil, and land use/cover also need to be considered in such nonlinear atmospheric and hydrologic processes. Last but not least, the long-term highresolution extreme 72 h precipitation and hillslope flood maps over a tropical transboundary region, D-TRW, were constructed based on 111 largest annual historical events during 1900–2010.
INTRODUCTION
DESCRIPTION OF THE STUDY REGION
METHODOLOGY
DATA AND MODEL IMPLEMENTATION
RESULTS AND DISCUSSION
CONCLUSIONS
ACKNOWLEDGEMENTS
DATA AVAILABILITY STATEMENT
REFERENCES
Amin, M. Z. M., Shaaban, A. J., Ercan, A., Ishida, K., Kavvas, M. L., Chen, Z. Q. & Jang, S. 2017 Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology models. Science of the Total Environment 575, 12–22.
Arab Amiri, M. & Mesgari, M. S. 2018 Analyzing the spatial variability of precipitation extremes along longitude and latitude, northwest Iran. Kuwait Journal of Science 45 (1), 121–127.
Arab Amiri, M., Amerian, Y. & Mesgari, M. S. 2016 Spatial and temporal monthly precipitation forecasting using wavelet transform and neural networks, Qara-Qum catchment, Iran. Arabian Journal of Geosciences 9 (5), 1–18. doi:10.1007/s12517-016-2446-2.
Benjamin, S. G., Dévényi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L. & Manikin, G. S.2004 An hourly assimilation–forecast cycle: the RUC. Monthly Weather Review 132 (2), 495–518.
Bougeault, P. & Lacarrere, P. 1989 Parameterization of orographyinduced turbulence in a mesobeta-scale model. Monthly Weather Review 117 (8), 1872–1890.
Bui, D. T., Hoang, N. D., Pham, T. D., Ngo, P. T. T., Hoa, P. V., Minh, N. Q., Tran, X. T. & Samui, P. 2019 A new intelligence approach based on GIS-based multivariate adaptive regression splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. Journal of Hydrology 575, 314–326.
Ceccherini, G., Ameztoy, I., Hernández, C. & Moreno, C. 2015 High-resolution precipitation datasets in South America and West Africa based on satellite-derived rainfall, enhanced vegetation index and digital elevation model. Remote Sensing 7 (5), 6454–6488.
Celleri, R., Willems, P., Buytaert, W. & Feyen, J. 2007 Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrological Processes 21 (24), 3316–3327.
Chen, Z. Q., Kavvas, M. L., Fukami, K., Yoshitani, J. & Matsuura, T. 2004a Watershed environmental hydrology (WEHY) model: model application. Journal of Hydrologic Engineering 9 (6), 480–490.
Chen, Z. Q., Kavvas, M. L., Yoon, J. Y., Dogrul, E. C., Fukami, K., Yoshitani, J. & Matsuura, T. 2004b Geomorphologic and soil hydraulic parameters for watershed environmental hydrology (WEHY) model. Journal of Hydrologic Engineering 9 (6), 465–479.
Chen, J.,Kavvas,M. L., Ishida,K.,Trinh,T.,Ohara,N.,Anderson,M. L. &Chen, Z. R. 2016 Role of snowmelt in determining whether the maximum precipitation always results in the maximum flood. Journal of Hydrologic Engineering 21 (10), 04016032.
Chou, M. D. & Suarez, M. J. 1999 A Solar Radiation Parameterization (CLIRAD-SW) for Atmospheric Studies. NASA Technical Memorandum 10460, 48.
Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H. & Swift Jr, L. W. 2017 High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology 37, 124–137.
Frei, C. & Schär, C. 1998 A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatology 18 (8), 873–900.
Gorguner, M., Kavvas, M. L. & Ishida, K. 2019 Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Science of the Total Environment 648, 481–499.
Guan, H., Wilson, J. L. & Makhnin, O. 2005 Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. Journal of Hydrometeorology 6 (6), 1018–1031.
Han, J. & Pan, H. L. 2011 Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather and Forecasting 26 (4), 520–533.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G., Walsh, M. G. & Gonzalez, M. R. 2014 SoilGrids1 km – global soil information based on automated mapping. PLoS ONE 9 (8), e105992.
Ho, C., Nguyen, A., Ercan, A., Kavvas, M. L., Nguyen, V. & Nguyen, T. 2018 Assessment of atmospheric conditions over the Hong Thai Binh river watershed by means of dynamically-downscaled ERA-20C reanalysis data. Journal of Water and Climate Change 11 (2), 540–555.
Ho, C., Trinh, T., Nguyen, A., Nguyen, Q., Ercan, A. & Kavvas, M. L. 2019 Reconstruction and evaluation of changes in hydrologic conditions over a transboundary region by a regional climate model coupled with a physically-based hydrology model: application to Thao River watershed. Science of the Total Environment 668, 768–779.
Ishida, K., Kavvas, M. L., Jang, S., Chen, Z. Q., Ohara, N. & Anderson, M. L. 2014 Physically based estimation of maximum precipitation over three watersheds in northern California: atmospheric boundary condition shifting. Journal of Hydrologic Engineering 20 (4), 04014052.
Jang, S., Kavvas, M., Ishida, K., Trinh, T., Ohara, N., Kure, S., Chen, Z., Anderson, M., Matanga, G. & Carr, K. 2017 A performance evaluation of dynamical downscaling of precipitation over northern California. Sustainability 9 (8), 1457.
Kavvas, M. L., Chen, Z. Q., Dogrul, C., Yoon, J. Y., Ohara, N., Liang, L., Aksoy, H., Anderson, M. L., Yoshitani, J., Fukami, K. & Matsuura, T. 2004 Watershed environmental hydrology (WEHY) model based on upscaled conservation equations: hydrologic module. Journal of Hydrologic Engineering 9 (6), 450–464.
Kavvas, M. L., Yoon, J., Chen, Z. Q., Liang, L., Dogrul, E. C., Ohara, N., Aksoy, H., Anderson, M. L., Reuter, J. & Hackley, S. 2006 Watershed environmental hydrology model: environmental module and its application to a California watershed. Journal of Hydrologic Engineering 11 (3), 261–272.
Kavvas, M. L., Kure, S., Chen, Z. Q., Ohara, N. & Jang, S. 2013 WEHY-HCM for modeling interactive atmospherichydrologic processes at watershed scale. I: model description. Journal of Hydrologic Engineering 18 (10), 1262–1271.
Kavvas, M. L., Ishida, K., Trinh, T., Ercan, A., Darama, Y. & Carr, K. J. 2017 Current issues in and an emerging method for flood frequency analysis under changing climate. Hydrological Research Letters 11 (1), 1–5.
Kure, S., Jang, S., Ohara, N., Kavvas, M. L. & Chen, Z. Q. 2013 WEHY-HCM for modeling interactive atmospherichydrologic processes at watershed scale. II: model application to ungauged and sparsely gauged watersheds. Journal of Hydrologic Engineering 18 (10), 1272–1281.
Le, K.T. 2009 Tư liệu trình bày chi tiết về điều kiện tự nhiên, đặc điểm khí tượng thủy văn dòng chảy, đặc điểm khí hậu, hiện trạng kinh tế xã hội trong lưu vực sông. http://www.vncold. vn/Web/Content.aspx?distid=1862.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L. W. M. J. & Merchant, J. W. 2000 Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21 (6–7), 1303–1330.
Melesse, A., Weng, Q., Thenkabail, P. & Senay, G.2007 Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors 7 (12), 3209–3241.
Nguyen-Thi, H. A., Matsumoto, J., Ngo-Duc, T. & Endo, N. 2012 A climatological study of tropical cyclone rainfall in Vietnam. SOLA 8, 41–44.
Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M. & Guzzetti, F. 2017 Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290, 39–57.
Poli, P., Hersbach, H., Tan, D., Dee, D., Thepaut, J. N., Simmons, A., Peubey, C., Laloyaux, P., Komori, T., Berrisford, P. & Dragani, R. 2013 The Data Assimilation System and Initial Performance Evaluation of the ECMWF Pilot Reanalysis of the 20th-Century Assimilating Surface Observations Only (ERA-20C). European Centre for Medium Range Weather Forecasts.
Poli, P., Hersbach, H., Dee, D., Berrisford, P., Simmons, A. & Laloyaux, P. 2015. ERA-20C Deterministic. European Centre for Medium Range Weather Forecasts.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G., Peubey, C., Thépaut, J. N. & Trémolet, Y. 2016 ERA-20C: an atmospheric reanalysis of the twentieth century. Journal of Climate 29 (11), 4083–4097.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. & Powers, J. G. 2005 A Description of the Advanced Research WRF Version 2 (No. NCAR/TN-468þ STR). National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J. & Abrams, M. 2011 ASTER Global Digital Elevation Model Version 2–Summary of Validation Results August 31, 2011.
Tan, M., Ibrahim, A., Duan, Z., Cracknell, A. & Chaplot, V. 2015 Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing 7 (2), 1504–1528.
Tao, W. K., Simpson, J. & McCumber, M. 1989 An ice-water saturation adjustment. Monthly Weather Review 117 (1), 231–235.
Toride, K., Cawthorne, D. L., Ishida, K., Kavvas, M. L. & Anderson, M. L. 2018 Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed. Science of the Total Environment 626, 244–254.
Trinh, T., Ishida, K., Fischer, I., Jang, S., Darama, Y., Nosacka, J., Brown, K.&Kavvas, M. L. 2016 New methodology to develop future flood frequency under changing climate by means of physically based numerical atmospheric-hydrologic modeling. Journal of Hydrologic Engineering 21 (4), 04016001.
Trinh, T., Kavvas, M. L., Ishida, K., Ercan, A., Chen, Z. Q., Anderson, M. L., Ho, C. & Nguyen, T. 2018 Integrating global land-cover and soil datasets to update saturated hydraulic conductivity parameterization in hydrologic modeling. Science of the Total Environment 631, 279–288.
Ward, E., Buytaert, W., Peaver, L. & Wheater, H. 2011 Evaluation of precipitation products over complex mountainous terrain: a water resources perspective. Advances in Water Resources 34 (10), 1222–1231.
Wuthiwongyothin, S., Jang, S. H., Ishida, K. & Kavvas, M. L. 2017 The effects of climate change on hydrology based on dynamically downscaling and physically-based hydrology model at upper Ping River Basin, Thailand. Internet Journal of Society for Social Management Systems. 11 (1), 78–89.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N. & Kitoh, A. 2012 APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society 93 (9), 1401–1415.
Yokoi, S. & Matsumoto, J. 2008 Collaborative effects of cold surge and tropical depression-type disturbance on heavy rainfall in central Vietnam. Monthly Weather Review 136 (9), 3275–3287.
T. Trinh (corresponding author)
Faculty of Hydrology and Water Resources, Thuy Loi University, Hanoi, Vietnam
E-mail: tqtrinh@ucdavis.edu
T. Trinh
M. L. Kavvas
Hydrologic Research Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
C. Ho
The Key Laboratory of River and Coastal Engineering, Hanoi, Vietnam
N. Do
Vietnam Academy for Water Resources, Hanoi, Vietnam
A. Ercan
J. Amorocho Hydraulics Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
© IWA Publishing 2020 Journal of Water and Climate Change | 11.S1 | 2020
Ý kiến góp ý: