TextBody
Huy chương 2

Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling

08/09/2021

Groundwater is one of the most important sources of fresh water all over the world, especially in those countries where rainfall is erratic, such as Vietnam. Nowadays, machine learning (ML) models are being used for the assessment of groundwater potential of the region. Credal decision trees (CDT) is one of the ML models which has been used in such studies. In the present study, the performance of the CDT has been improved using various ensemble frameworks such as Bagging, Dagging, Decorate, Multiboost, and Random SubSpace. Based on these methods, five hybrid models, namely BCDT, Dagging-CDT, Decorate-CDT, MBCDT, and RSSCDT, were developed and applied for groundwater potential mapping of DakLak province of Vietnam. Data of 227 groundwater wells of the study area were utilized for the construction and validation of the models. Twelve groundwater potential conditioning factors, namely rainfall, slope, elevation, river density, Sediment Transport Index (STI), curvature, flow direction, aspect, soil, land use, TopographicWetness Index (TWI), and geology, were considered for the model studies. Various statistical measures, including area under receiver operating characteristic (AUC) curve, were applied to validate and compare the performance of the models. The results show that performance of the hybrid CDT ensemble models MBCDT (AUC = 0.770), BCDT (AUC = 0.731), Dagging-CDT (AUC = 0.763), Decorate-CDT (AUC = 0.750), and RSSCDT (AUC = 0.766) improved significantly in comparison to the single CDT (AUC = 0.722) model. Therefore, these developed hybrid models can be applied for better ground water potential mapping and groundwater resources management of the study area as well as other regions of the world.

1. Introduction

2. Methods Used

2.1. Credal Decision Trees (CDT)

2.2. Bagging

2.3. Dagging

2.4. Decorate

2.5. MultiBoost

2.6. Random SubSpace

2.7. Correlation-based Feature Selection

2.8. Validation Methods

3. Study Area

4. Data Used

4.1. Well Yields

4.2. Groundwater Influencing Parameters

5. Methodological Flow Chart

6. Results and Analysis

6.1. Analysis of Feature Selection of Groundwater Potential Influencing Factors

6.2. Evaluation of Models Performance Using Statistical Methods

6.3. Evaluation and Validation of Groundwater Potential Maps

7. Discussion

8. Conclusions

References

1. Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Environ. 2019, 658, 160–177. [CrossRef] [PubMed]

2. Grönwall, J.; Oduro-Kwarteng, S. Groundwater as a strategic resource for improved resilience: A case study from peri-urban Accra. Environ. Earth Sci. 2017, 77, 6. [CrossRef]

3. Nkhuwa, D.; Abiye, T.; Oga, M.; Adelana, S.; Tindimugaya, C. Urban groundwater management and protection in Sub-Saharan Africa. In IAH-Selected Papers on Hydrogeology; Informa UK Limited: Colchester, UK, 2008; Volume 6152, pp. 1–7.

4. World Water Assessment Programme. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk; UNESCO: Paris, France, 2012.

5. Aubriot, O. Baisse des nappes d’eau souterraine en Inde du Sud Forte demande sociale et absence de gestion de la ressource. Geocarrefour 2006, 81, 83–90. [CrossRef]

6. Amarasinghe, U.A.; Smakhtin, V. Global Water Demand Projections: Past, Present and Future; IWMI: Colombo, Sri Lanka, 2014.

7. Boretti, A.; Rosa, L. Reassessing the projections of theWorldWater Development Report. NPJ Clean Water 2019, 2, 15. [CrossRef]

8. Okello, C.; Tomasello, B.; Greggio, N.;Wambiji, N.; Antonellini, M. Impact of Population Growth and Climate Change on the Freshwater Resources of Lamu Island, Kenya. Water 2015, 7, 1264–1290. [CrossRef]

9. Carter, R.C.; Parker, A. Climate change, population trends and groundwater in Africa. Hydrol. Sci. J. 2009, 54, 676–689. [CrossRef]

10. Garcia-Franco, N.; Hobley, E.; Hübner, R.;Wiesmeier, M. Chapter 23—Climate-Smart Soil Management in Semiarid Regions. In Soil Management and Climate Change; Muñoz, M.Á., Zornoza, R., Eds.; Academic Press: Waltham, MA, USA, 2018; pp. 349–368. [CrossRef]

11. Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [CrossRef]

12. Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K. A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 2015, 525, 197–208. [CrossRef]

13. Rahmati, O.; Samani, A.N.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab. J. Geosci. 2014, 8, 7059–7071. [CrossRef]

14. Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75, 665. [CrossRef]

15. Al-Nahmi, F.; Saddiqi, O.; Rhinane, H.; Baidder, L.; El Arabi, H.; Khanbari, K.; Hilali, A. Application of Remote Sensing in Geological Mapping, Case Study Al Maghrabah Area—Hajjah Region, Yemens. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2017, 4, 63. [CrossRef]

16. Khosravi, K.; Sartaj, M.; Tsai, F.T.-C.; Singh, V.P.; Kazakis, N.; Melesse, A.; Prakash, I.; Bui, D.T.T.; Pham, B.T. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci. Total. Environ. 2018, 642, 1032–1049. [CrossRef]

17. Mehra, M.; Oinam, B.; Singh, C.K. Integrated Assessment of Groundwater for Agricultural Use in Mewat District of Haryana, India Using Geographical Information System (GIS). J. Indian Soc. Remote. Sens. 2016, 44, 747–758. [CrossRef]

18. Marsland, S. Machine learning: An Algorithmic Perspective; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014.

19. Chen,W.; Li, Y.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue,W.; Bian, H. Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models. Appl. Sci. 2020, 10, 425. [CrossRef]

20. Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2015, 188, 44. [CrossRef]

21. Lee, S.; Hong, S.-M.; Jung, H.-S. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto Int. 2017, 33, 847–861. [CrossRef]

22. Park, S.; Hamm, S.-Y.; Jeon, H.-T.; Kim, J. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS. Sustainability 2017, 9, 1157. [CrossRef]

23. Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [CrossRef]

24. Khosravi, K.; Panahi, M.; Khosravi, K.; Chen, W.; Rezaie, F.; Parvinnezhad, D. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J. Hydrol. 2019, 572, 435–448.

25. Miraki, S.; Zanganeh, S.H.; Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Pham, B.T. Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resour. Manag. 2018, 33, 281–302. [CrossRef]

26. Naghibi, S.A.; Pourghasemi, H.R.; Abbaspour, K. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor. Appl. Clim. 2017, 131, 967–984. [CrossRef]

27. Abellán, J.; Moral, S. Building classification trees using the total uncertainty criterion. Int. J. Intell. Syst. 2003, 18, 1215–1225. [CrossRef]

28. Mantas, C.J.; Abellán, J. Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data. Expert Syst. Appl. 2014, 41, 4625–4637. [CrossRef]

29. García-Tejero, I.F.; Durán Zuazo, V.; Muriel, J.; Rodriguez, C. Water and Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2011; Volume 1, pp. 1–94.

30. Kumar, M.D.; Sivamohan, M.V.K.; Bassi, N. Water Management, Food Security and Sustainable Agriculture in Developing Economies; Routledge: Abingdon, UK, 2013.

31. Abellán, J.; Masegosa, A.R. Combining Decision Trees Based on Imprecise Probabilities and Uncertainty Measures; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4724, pp. 512–523.

32. Moral-García, S.; Mantas, C.J.; Castellano, J.G.; Benítez, M.D.; Abellán, J. Bagging of credal decision trees for imprecise classification. Expert Syst. Appl. 2020, 141, 112944. [CrossRef]

33. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]

34. Quinlan, J.R. Bagging, Boosting, and C4. 5; University of Sydney: Sydney, Australia, 2006; Volume 1, pp. 725–730.

35. Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [CrossRef]

36. Hong, H.; Liu, J.; Zhu, A.-X. Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China). Environ. Earth Sci. 2019, 78, 488. [CrossRef]

37. Ting, K.;Witten, I. Stacking Bagged and Dagged Models; The University ofWaikato: Hamilton, New Zealand, 1997.

38. Kotsianti, S.B.; Kanellopoulos, D. Combining Bagging, Boosting and Dagging for Classification Problems. Comput. Vis. 2007, 4693, 493–500.

39. Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Tran, T.-T.-T.; Bui, D.T.T. Landslide susceptibility modeling using Reduced Error Pruning Trees and di_erent ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218. [CrossRef]

40. Melville, P.; Mooney, R.J. Creating diversity in ensembles using artificial data. Inf. Fusion 2005, 6, 99–111. [CrossRef]

41. Sun, B.; Chen, H.;Wang, J. An empirical margin explanation for the e_ectiveness of DECORATE ensemble learning algorithm. Knowl. Based Syst. 2015, 78, 1–12. [CrossRef]

42. Webb, G.I. MultiBoosting: A Technique for Combining Boosting and Wagging. Mach. Learn. 2000, 40, 159–196. [CrossRef]

43. Pham, B.T.; Bui, D.T.T.; Prakash, I.; Dholakia, M. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 2017, 149, 52–63. [CrossRef]

44. Kotti, M.; Benetos, E.; Kotropoulos, C.; Pitas, I. A neural network approach to audio-assisted movie dialogue detection. Neurocomputing 2007, 71, 157–166. [CrossRef]

45. Bui, D.T.T.; Ho, T.-C.; Pradhan, B.; Pham, B.T.; Nhu, V.-H.; Revhaug, I. GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ. Earth Sci. 2016, 75, 1101.

46. Wang, X.; Tang, X. Random Sampling for Subspace Face Recognition. Int. J. Comput. Vis. 2006, 70, 91–104. [CrossRef]

47. Skurichina, M.; Duin, R.P.W. Bagging, Boosting and the Random Subspace Method for Linear Classifiers. Pattern Anal. Appl. 2002, 5, 121–135. [CrossRef]

48. Pham, B.T.; Jaafari, A.; Prakash, I.; Singh, S.K.; Quoc, N.K.; Bui, D.T.T. Hybrid computational intelligence models for groundwater potential mapping. Catena 2019, 182, 104101. [CrossRef]

49. Hoa, P.V.; Giang, N.V.; Binh, N.A.; Hai, L.V.H.; Pham, T.D.; Hasanlou, M.; Bui, D.T.T. Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote. Sens. 2019, 11, 128. [CrossRef]

50. Bui, Q.T.; Nguyen, Q.-H.; Nguyen, X.L.; Pham, V.D.; Nguyen, H.D.; Pham, V.-M. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J. Hydrol. 2020, 581, 124379. [CrossRef]

51. Gnanambal, S.; Thangaraj, M.; Meenatchi, V.; Gayathri, V. Classification Algorithms with Attribute Selection: An evaluation study using WEKA. Int. J. Adv. Netw. Appl. 2018, 9, 3640–3644.

52. Kordestani, M.D.; Naghibi, S.A.; Hashemi, H.; Ahmadi, K.; Kalantar, B.; Pradhan, B. Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeol. J. 2018, 27, 211–224. [CrossRef]

53. Kalantar, B.; AI-Najjar, H.A.H.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Naghibi, S.A. Optimized Conditioning Factors Using Machine Learning Techniques for Groundwater Potential Mapping. Water 2019, 11, 1909. [CrossRef]

54. Termeh, S.V.R.; Khosravi, K.; Sartaj, M.; Keesstra, S.D.; Tsai, F.T.-C.; Dijksma, R.; Pham, B.T. Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeol. J. 2019, 27, 2511–2534. [CrossRef]

55. Van Dao, D.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Van Phong, T.; Ly, H.-B.; Le, T.-T.; Trinh, P.T. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena 2020, 188, 104451.

56. Lei, T.; Zhang, Y.; Lv, Z.; Li, S.; Liu, S.; Nandi, A.K. Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1–5. [CrossRef]

57. Pham, B.T.; Jaafari, A.; Prakash, I.; Bui, D.T. A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bull. Int. Assoc. Eng. Geol. 2018, 78, 2865–2886. [CrossRef]

58. Pham, B.T.; Pradhan, B.; Bui, D.T.T.; Prakash, I.; Dholakia, M. A comparative study of di_erent machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [CrossRef]

59. Janizadeh, S.; Avand, M.; Jaafari, A.; Van Phong, T.; Bayat, M.; Ahmadisharaf, E.; Prakash, I.; Pham, B.T.; Lee, S. Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability 2019, 11, 5426. [CrossRef]

60. Nguyen, V.-T.; Tran, T.; Ha, N.; Ngo, V.L.; Al-Ansari, N.; Van Phong, T.; Nguyen, D.H.; Malek, M.; Amini, A.; Prakash, I.; et al. GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability 2019, 11, 7118. [CrossRef]

61. Pham, B.T.; Bui, D.T.T.; Dholakia, M.B.; Prakash, I.; Pham, H.V. A Comparative Study of Least Square Support Vector Machines and Multiclass Alternating Decision Trees for Spatial Prediction of Rainfall-Induced Landslides in a Tropical Cyclones Area. Geotech. Geol. Eng. 2016, 34, 1807–1824. [CrossRef]

62. Pham, B.T.; Shirzadi, A.; Shahabi, H.; Omidvar, E.; Singh, S.K.; Sahana, M.; Asl, D.T.; Bin Ahmad, B.; Quoc, N.K.; Lee, S.; et al. Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms. Sustainability 2019, 11, 4386. [CrossRef]

63. Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Di_erent Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote. Sens. 2019, 11, 196. [CrossRef]

64. Asteris, P.G.; Ashrafian, A.; Rezaie-Balf, M. Prediction of the compressive strength of self-compacting concrete using surrogate models. Comput. Concr. 2019, 24, 137–150.

65. Asteris, P.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M. Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct. 2018, 26, 1146–1153. [CrossRef]

66. Lemonis, M.E.; Asteris, P.G.; Zitouniatis, D.G.; Ntasis, G.D. Modeling of the lateral sti_ness of masonry infilled steel moment-resisting frames. Struct. Eng. Mech. 2019, 70, 421–429.

67. Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [CrossRef]

68. Pham, B.T.; Bui, D.T.T.; Prakash, I.; Dholakia, M.B. Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat. Hazards 2016, 83, 97–127. [CrossRef]

69. Aladejana, O.; Anifowose, A.Y.B.; Fagbohun, B.J. Testing the ability of an empirical hydrological model to verify a knowledge-based groundwater potential zone mapping methodology. Model. Earth Syst. Environ. 2016, 2, 1–17. [CrossRef]

70. Andualem, T.G.; Demeke, G.G. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2019, 24, 100610. [CrossRef]

71. Schillaci, C.; Braun, A.; Kropáˇcek, J. 2.4. 2. Terrain analysis and landform recognition. Geomorphol. Tech. 2015, 2, 1–18.

72. Solomon, S.; Quiel, F. Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol. J. 2006, 14, 1029–1041. [CrossRef]

73. Moghaddam, D.D.; Rahmati, O.; Haghizadeh, A.; Kalantari, Z. A Modeling Comparison of Groundwater Potential Mapping in a Mountain Bedrock Aquifer: QUEST, GARP, and RF Models. Water 2020, 12, 679. [CrossRef]

74. Chen,W.; Li, H.; Hou, E.;Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C.; et al. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total. Environ. 2018, 634, 853–867. [CrossRef]

75. Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Nat. Hazards Earth Syst. Sci. 2013, 13, 2815–2831. [CrossRef]

76. Ercanoglu, C.G.M.; Ercanoglu, M.; Gokceoglu, C. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ. Earth Sci. 2002, 41, 720–730.

77. Botzen, W.J.W.; Aerts, J.C.J.H.; Bergh, J.C.V.D. Individual preferences for reducing flood risk to near zero through elevation. Mitig. Adapt. Strat. Glob. Chang. 2012, 18, 229–244. [CrossRef]

78. Conforti, M.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat. Hazards 2010, 56, 881–898. [CrossRef]

79. Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35, 1125–1138. [CrossRef]

80. Moore, I.D.; Grayson, R.B.; Ladson, A. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

81. Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. Surface runo_ prediction regarding LULC and climate dynamics using coupled LTM, optimized ARIMA, and GIS-based SCS-CN models in tropical region. Arab. J. Geosci. 2018, 11, 53. [CrossRef]

82. Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A.; Lee, S. Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J. Hydrol. 2019, 579, 124172. [CrossRef]

83. Magesh, N.; Chandrasekar, N.; Soundranayagam, J.P. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 2012, 3, 189–196. [CrossRef]

84. Naghibi, S.A.; Pourghasemi, H.R. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour. Manag. 2015, 29, 5217–5236. [CrossRef]

85. Huy, T.D.; Thanh, T.N.; Van Lam, N.; Van Hoang, N. Inverse analysis for transmissivity and the Red river bed’s leakage factor for Pleistocene aquifer in Sen Chieu, Hanoi by pumping test under the river water level fluctuation. Vietnam J. Earth Sci. 2017, 40, 26–38. [CrossRef]

86. Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resour. Manag. 2017, 45, 5–2775. [CrossRef]

87. Oanh, T.T.K.; Nguyen, V.L. High Arsenic Consntration in Groundwater related to Sedimentary Facies in the Mekong River Delta, Vietnam. Vietnam J. Earth Sci. 2016, 38, 178–187.

88. Thai, T.H.; Thao, N.P.; Dieu, B.T. Assessment and Simulation of Impacts of Climate Change on Erosion and Water Flow by Using the Soil and Water Assessment Tool and GIS: Case Study in Upper Cau River basin in Vietnam. Vietnam J. Earth Sci. 2017, 39, 376–392. [CrossRef]

89. Lerner, D.; Harris, B. The relationship between land use and groundwater resources and quality. Land Use Policy 2009, 26, S265–S273. [CrossRef]

90. Fashae, O.A.; Tijani, M.; Talabi, A.O.; Adedeji, O.I. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Appl. Water Sci. 2013, 4, 19–38. [CrossRef]

91. Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl. Water Sci. 2015, 7, 503–519. [CrossRef]

92. Bui, Q.T.; Nguyen, Q.-H.; Pham, V.D.; Pham, M.H.; Tran, A.T.; Van Manh, P.; Hai, P.M.; Tu§n, T.A. Understanding spatial variations of malaria in Vietnam using remotely sensed data integrated into GIS and machine learning classifiers. Geocarto Int. 2018, 34, 1300–1314. [CrossRef]

93. Naghibi, S.A.; Moghaddam, D.D.; Kalantar, B.; Pradhan, B.; Kisi, O. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J. Hydrol. 2017, 548, 471–483. [CrossRef]

94. Dou, J.; Bui, D.T.T.; Yunus, A.P.; Jia, K.; Song, X.; Revhaug, I.; Xia, H.; Zhu, Z. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. PLoS ONE 2015, 10, e0133262. [CrossRef] [PubMed]

95. Chen,W.; Pradhan, B.; Li, S.; Shahabi, H.; Rizeei, H.M.; Hou, E.;Wang, S. Novel Hybrid Integration Approach of Bagging-Based Fisher’s Linear Discriminant Function for Groundwater Potential Analysis. Nat. Resour. Res. 2019, 28, 1239–1258. [CrossRef]

96. Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T.T. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coe_cient of consolidation of soil. Catena 2019, 173, 302–311. [CrossRef]

97. Naghibi, S.A.; Dolatkordestani, M.; Rezaei, A.; Amouzegari, P.; Heravi, M.T.; Kalantar, B.; Pradhan, B. Application of rotation forest with decision trees as base classifier and a novel ensemble model in spatial modeling of groundwater potential. Environ. Monit. Assess. 2019, 191, 248. [CrossRef]

98. Van Phong, T.; Phan, T.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Chapi, K.; Ly, H.-B.; Ho, L.; Quoc, N.K.; Pham, B.T.; et al. Landslide susceptibility modeling using di_erent artificial intelligence methods: A case study at Muong Lay district, Vietnam. Geocarto Int. 2019, 1–24. [CrossRef]

99. Abedini, M.; Ghasemian, B.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Pham, B.T.; Bin Ahmad, B.; Bui, D.T.T. A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment. Geocarto Int. 2018, 34, 1427–1457. [CrossRef]

100. Nas, B.; Berktay, A. Groundwater quality mapping in urban groundwater using GIS. Environ. Monit. Assess. 2008, 160, 215–227. [CrossRef]

101. Mandel, S. Groundwater Resources: Investigation and Development; Elsevier: Rio de Janeiro, Brazil, 2012.

102. Nga, D.V.; Trang, P.T.K.; Duyen, V.T.; Mai, T.T.; Lan, V.T.M.; Viet, P.H.; Postma, D.; Jakobsen, R. Spatial variations of arsenic in groundwater from a transect in the Northwestern Hanoi. Vietnam J. Earth Sci. 2017, 40, 70–77. [CrossRef]

103. Van Hoang, N.; Hoa, P.T.L.; Tung, L.T. Study on the accuracy of the numerical modeling of the groundwater movement due to spatial and temporal discretization. Vietnam J. Earth Sci. 2015, 36, 424–431. [CrossRef]

104. Khosravi, K.; Barzegar, R.; Miraki, S.; Adamowski, J.; Daggupati, P.; Alizadeh, M.R.; Pham, B.T.; Alami, M.T. Stochastic Modeling of Groundwater Fluoride Contamination: Introducing Lazy Learners. Ground Water 2019. [CrossRef] [PubMed]

105. Bui, D.T.T.; Shirzadi, A.; Chapi, K.; Shahabi, H.; Pradhan, B.; Pham, B.T.; Singh, V.P.; Chen, W.; Khosravi, K.; Bin Ahmad, B.; et al. A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water 2019, 11, 2013.

106. Abellán, J.; Masegosa, A.R. An ensemble method using credal decision trees. Eur. J. Oper. Res. 2010, 205, 218–226. [CrossRef]

107. Abellán, J.; Masegosa, A.R. Bagging schemes on the presence of class noise in classification. Expert Syst. Appl. 2012, 39, 6827–6837. [CrossRef]

108. He, Q.; Xu, Z.; Li, S.; Li, R.; Zhang, S.; Wang, N.; Pham, B.T.; Chen, W. Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling. Entropy 2019, 21, 106. [CrossRef]

109. Trawinski, K.; Cordón, O.; Quirin, A.; Sánchez, L. Multiobjective genetic classifier selection for random oracles fuzzy rule-based classifier ensembles: How beneficial is the additional diversity? Knowl. Based Syst. 2013, 54, 3–21. [CrossRef]

——————————————————————————————————————————

See detail: Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling

 

Phong Tung Nguyen 1,*, Duong Hai Ha 2, Huu Duy Nguyen 3, Tran Van Phong 4 , Phan Trong Trinh 4, Nadhir Al-Ansari 5,* , Hiep Van Le 6, Binh Thai Pham 6,* , Lanh Si Ho 7,* and Indra Prakash 8


1 Vietnam Academy for Water Resources, Hanoi 100000, Vietnam
2 Institute for Water and Environment, Hanoi 100000, Vietnam; hahaiduongcwe@yahoo.com
3 Faculty of Geography, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 100000, Vietnam; huuduy151189@gmail.com
4 Institute of Geological Sciences, Vietnam Academy of Sciences and Technology, 84 Chua Lang Street, Dong da, Hanoi 100000, Vietnam; tphong1617@gmail.com (T.V.P.); phantrongt@yahoo.com (P.T.T.)
5 Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden
6 University of Transport Technology, Hanoi 100000, Vietnam; hieplv@utt.edu.vn
7 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
8 Department of Science & Technology, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Government of Gujarat, Gandhinagar 382002, India; indra52prakash@gmail.com
* Correspondence: phongicd@gmail.com (P.T.N.); nadhir.alansari@ltu.se (N.A.-A.); binhpt@utt.edu.vn (B.T.P.); hosilanh@duytan.edu.vn (L.S.H.)

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Ý kiến góp ý: