TextBody
Huy chương 2

Nearshore Topographical Changes and Coastal Stability in Nam Dinh Province, Vietnam

24/08/2021

Recently, the coastal zone in Vietnam has experienced more intensive sea attacks due to severe typhoons, climate change, and humsection an activities. Sea level rise has been recorded all along the coast. Moreover, sand exploitation and engineering measures have significantly changed local reliefs and led to apparent sea water level change on the coast of Nam Dinh province. Coastal erosion and sea dike failures have become a serious problem in the region. The site investigation of nearshore topography shows the recent changes to the coast. Hydrodynamic models show that changes of relief and increased wave attacks on dikes. The main reason for sea dike instability is soil erosion due to wave topping; meanwhile, the dikes are stable in terms of sliding. The coast should be reinforced with properly constructed revetments, wave topping preventive measures, and nearshore sand exploitation should be halted.

1. Introduction

2. Materials and Methods

2.1. Topographical Cross Section

2.2. Bathymetry

2.3. Marine and Sediment Data

2.4. Hydrodynamics and Sediment Transport Modeling

2.4.1. Setting up Models

2.4.2. River Boundary

2.4.3. Open Boundary

2.4.4. Calibration and Verification of the Models

3. Results

3.1. Nearshore Topographical Change

3.2. Hydrodynamic Changes

4. Discussion

4.1. E_ects of Sea Level Rise

4.2. Wave Pressure on Seadike Slope

4.3. General Proposal of Adaptive Measures

5. Conclusions

References

1. IPCC, 2019: Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al., Eds.; IPCC: Geneva, Switzerland, 2019.

2. Cong, V.M.; Stive, M.J.F.; Van Gelder, P.H.A.J.M. Coastal protection strategies for the Red River Delta. J. Coast. Res. 2009, 25, 105–116.

3. Schleupner, C. Spatial assessment of sea level rise on Martinique’s coastal zone and analysis of planning frameworks for adaptation. J. Coast. Conserv. 2007, 11, 91–103. [CrossRef]

4. Yasuhara, K.; Tamura, M.; Ling, F.H.; Prabhakar, S.V.R.K. Overcoming barriers to climate change adaptation: Role and comparison of international networks. J. JSCE G (Environment) 2011, 67, 203–212.

5. Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [CrossRef] [PubMed]

6. Kuriyama, Y.; Banno, M. Shoreline change caused by the increase in wave transmission over a submerged breakwater due to sea level rise and land subsidence. Coast. Eng. 2016, 112, 9–16. [CrossRef]

7. Dean, R.G.; Houston, J.R. Determining shoreline response to sea level rise. Coast. Eng. 2016, 114, 1–8. [CrossRef]

8. Sharaan, M.; Somphong, C.; Udo, K. Impact of SLR on Beach-Tourism Resort Revenue at Sahl Hasheesh and Makadi Bay, Red Sea, Egypt; A Hedonic Pricing Approach. J. Mar. Sci. Eng. 2020, 8, 432. [CrossRef]

9. Ware, D.; Buckwell, A.; Tomlinson, R.; Foxwell-Norton, K.; Lazarow, N. Using Historical Responses to Shoreline Change on Australia’s Gold Coast to Estimate Costs of Coastal Adaptation to Sea Level Rise. J. Mar. Sci. Eng. 2020, 8, 380. [CrossRef]

10. Hanh, P.T.T.; Furukawa, M. Impact of Sea Level Rise on Coastal Zone of Vietnam; Bulletin of Faculty of Science; University of the Ryukyus: Nishihara, Japan, 2007; pp. 45–59.

11. Duc, D.M.; Nhuan, M.T.; Ngoi, C.V. An analysis of coastal erosion in the tropical rapid accretion delta of the Red River, Vietnam. J. Asian Earth Sci. 2012, 43, 98–109. [CrossRef]

12. Nguyen, H.Q.; Takewaka, S. Detection of Land Subsidence in Nam Dinh Coast by Dinsar Analyses. In Proceedings of the 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, 25–28 September 2019; Springer Nature: Singapore, 2019.

13. Thuy, M.T.T.; Nagatsuka, S.; Nishihata, T.; Takewaka, S.; Mimura, N.; Yasuhara, K.; Duc, D.M. Analysis of a large-scale erosion in Hai Hau coast, Northern Vietnam. J. JSCE B 2012, 2, 68.

14. Yasuhara, K.; Juan, R. Geosynthetic-wrap around revetments for shore protection. Geotext. Geomembr. 2007, 10, 1–12. [CrossRef]

15. Masria, A.; Iskander, M.; Negm, A. Coastal protection measures, case study (Mediterranean zone, Egypt). J. Coast. Conserv. 2015, 19. [CrossRef]

16. Ministry of Natural Resources and Environment (MONRE). Climate Change, Sea Level Rise Scenarios for Vietnam. 2016. Available online: http://www.imh.ac.vn/files/doc/2017/CCS%20final.compressed.pdf (accessed on 29 June 2020).

17. Duc, D.M.; Yasuhara, K.; Hieu, N.M.; Lan, N.C. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. J. Coast. Conserv. 2017, 21, 47–62. [CrossRef]

18. Pruszak, Z.; Szmytkiewicz, M.; Hung, N.M.; Ninh, P.V. Coastal processes in the Red River delta area, Vietnam. Coast. Eng. J. 2002, 44, 97–126. [CrossRef]

19. Le, T.P.Q.; Garnier, J.; Gilles, B.; Sylvain, T.; Van, M.C. The changing flow regime and sediment load of the Red River, VietNam. J. Hydrol. 2007, 334, 199–214. [CrossRef]

20. Häglund, M.; Svenssen, P. Coastal Erosion at Hai Hau Beach in the Red River Delta, Vietnam. Master’s Thesis, Coastal Engineering, Lund University, Lund, Switzerland, 2002.

21. Duc, D.M.; Nhuan, M.T.; Ngoi, C.V.; Nghi, T.; Tien, D.M.; vanWeering, T.C.E.; van den Bergh, G.D. Sediment distribution and transport at the nearshore zone of the Red River delta, Northern Vietnam. J. Asian Earth Sci. 2007, 29, 558–565. [CrossRef]

22. Te Slaa, S. Coastal Erosion Processes near Sea Dike in Hai Hau District, Vietnam. Master’s Thesis, Hydraulic Engineering, Delft University of Technology, Delft, The Netherlands, 2009; 191p.

23. Huong, T.T.T. Swan Predictions of Nearshore Wave Climate at Nam Dinh Coast of Vietnam. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2003; p. 71.

24. Dabees, M.; Kamphuis, J.W. Oneline, a numerical model for shoreline change. In Proceedings of the 26th International Conference on Coastal Engineering, Copenhagen, Denmark, 22–26 June 1998.

25. Anna, Z. Mathematical Modelling of Shoreline Evolution under Climate Change. Ph.D. Thesis, Faculty of Technology, University of Plymouth, Plumouth, UK, 2008.

26. Vu, L.G. Coastal Morphology: A Case Study in Province of Nam Dinh, Red River Delta, Vietnam. Master’s Thesis, International Institute for Infrastructure, Hydraulic and Environmental Engineering, Delft, The Netherlands, 2003.

27. MIKE 2017. Hydrodynamic Module User Guide. p. 144. Available online: https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/M21HD.pdf (accessed on 29 June 2020).

28. MIKE 2017. SpectralWave Module User Guide. p. 120. Available online: https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/MIKE21SW.pdf (accessed on 29 June 2020).

29. MIKE 2017. Non-Cohesive Sediment Transport Module User Guide. p. 58. Available online: https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/m21st.pdf (accessed on 29 June 2020).

30. NationalWeather Service. NOAAWaveWatch III Model Data Access. Available online: https://polar.ncep.noaa.gov/waves/ensemble/download.shtml? (accessed on 29 June 2020).

31. Egbert & Erofeeva, CEOAS, Oregon State University, USA. OSU TPXO Tide Models. Available online: https://www.tpxo.net/ (accessed on 29 June 2020).

32. Chini, N.; Stansby, P.; Leake, J.;Wolf, J.; Roberts-Jones, J.; Lowe, J. The impact of sea level rise and climate change on inshore wave climate: A case study for East Anglia (UK). Coast. Eng. 2010, 57, 973–984. [CrossRef]

33. Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [CrossRef]

34. Ding, Y.K.; Frey, A.E.; Styles, R. Probabilistic modeling of long-term shoreline changes in response to sea level rise and waves. Scour and Erosion IX. In Proceedings of the 9th International Conference on Scour and Erosion (ICSE 2018), Taipei, Taiwan, 5–8 November 2018; pp. 203–211.

35. Ding, Y.; Kim, S.C.; Frey, A.E. Probabilistic Shoreline Evolution Modeling in Response to Sea Level Changes. In World Environmental and Water Resources Congress 2018: Hydraulics and Waterways, Water Distribution Systems Analysis, and Smart Water, Minneapolis, MN, USA, 3–7 June 2018; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 197–209.

36. Wang, L.; Perrie, W.; Long, Z.; Blokhina, M.; Zhang, G.; Toulany, B.; Zhang, M. The impact of climate change on the wave climate in the Gulf of St. Lawrence. Ocean. Model. 2018, 128, 87–101. [CrossRef]

37. Fuhrboter, A.; Sparboom, U. Shock pressure interactions on prototype sea dykes caused by breaking waves. In Proceedings of the SOWAS 88: International Symposium on Modelling Soil-Water-Structure Interactions, Delft, The Netherlands, 29 August–2 September 1988; Kolkman, P.A., Lindenberg, J., Pilarczyk, K.W., Eds.; Balkema: Rotterdam, The Netherlands, 1988; pp. 243–252. ISBN 9061918154.

38. Pilarczyk, K.W. (Ed.) Coastal Protection; Balkema: Rotterdam, The Netherlands, 1990.

39. Dorst, K.; Provoost, Y.; Verhagen, H.J. Stability of Pattern Places Revetment Elements. In Proceedings of the 8th International Conference on Coastal and Port Engineering in Developing Countries (COPEDEC 2012), IIT Madras, Chennal, India, 20–24 February 2012.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


See detail: Nearshore Topographical Changes and Coastal Stability in Nam Dinh Province, Vietnam

Nguyen Thanh Hung 1, Do Minh Duc 2,*, Dinh Thi Quynh 3 and Vu Dinh Cuong 1
1 Key Laboratory of River and Coastal Engineering, Vietnam Academy for Water Resources, Hanoi 100000,
Vietnam; nthung@vawr.org.vn (N.T.H.); cuongvd.vkhtlvn@gmail.com (V.D.C.)
2 Department of Geotechnics and Infrastructural Development, University of Science,
Vietnam National University, Hanoi 100000, Vietnam
3 Institute of Geotechnology and Environment, Hanoi 100000, Vietnam; quynhdtgeo@gmail.com
* Correspondence: ducdm@vnu.edu.vn; Tel.: +84-966-968-881

Journal of Marine Science and Engineering

Ý kiến góp ý: